Cluster algebras arising from cluster tubes
نویسندگان
چکیده
منابع مشابه
Cluster algebras arising from cluster tubes
We study the cluster algebras arising from cluster tubes with rank bigger than 1. Cluster tubes are 2−Calabi-Yau triangulated categories which contain no cluster tilting objects, but maximal rigid objects. Fix a maximal rigid object T in the cluster tube Γn of rank n (n > 1). For any indecomposable rigid object M in Γn, we define an analogous XM of Caldero-Chapton’s formula (or Palu’s cluster c...
متن کاملCLUSTER ALGEBRAS AND CLUSTER CATEGORIES
These are notes from introductory survey lectures given at the Institute for Studies in Theoretical Physics and Mathematics (IPM), Teheran, in 2008 and 2010. We present the definition and the fundamental properties of Fomin-Zelevinsky’s cluster algebras. Then, we introduce quiver representations and show how they can be used to construct cluster variables, which are the canonical generator...
متن کاملcluster algebras and cluster categories
these are notes from introductory survey lectures given at the institute for studies in theoretical physics and mathematics (ipm), teheran, in 2008 and 2010. we present the definition and the fundamental properties of fomin-zelevinsky’s cluster algebras. then, we introduce quiver representations and show how they can be used to construct cluster variables, which are the canonical generators of ...
متن کاملOn Cluster Algebras Arising from Unpunctured Surfaces Ii
We study cluster algebras with principal and arbitrary coefficient systems that are associated to unpunctured surfaces. We give a direct formula for the Laurent polynomial expansion of cluster variables in these cluster algebras in terms of certain paths on a triangulation of the surface. As an immediate consequence, we prove the positivity conjecture of Fomin and Zelevinsky for these cluster a...
متن کاملEndomorphism Algebras of Maximal Rigid Objects in Cluster Tubes
Given a maximal rigid object T of the cluster tube, we determine the objects finitely presented by T . We then use the method of Keller and Reiten to show that the endomorphism algebra of T is Gorenstein and of finite representation type, as first shown by Vatne. This algebra turns out to be the Jacobian algebra of a certain quiver with potential, when the characteristic of the base field is no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the London Mathematical Society
سال: 2014
ISSN: 0024-6107
DOI: 10.1112/jlms/jdu006